Geometric Modeling

Silke Jansen, Ruxandra Lasowski, Avinash Sharma, Art Tevs, Michael Wand

Exercise 1 (Curvature):
[2 points]
Given the surface $f(x, y)=3+x y$, what is the curvature $\kappa(\alpha)$ at point $\binom{0}{0}$ in direction α (use polar coordinates)? In which direction is it minimal / maximal?

Exercise 2 (Interpolation with Basis Functions):
[3+3+1 points]
Let $\left\{\left(x_{i}, y_{i}\right) \mid i=1 \ldots n\right\}$ be a set of given points. To interpolate them a polynomial of degreen- 1 is necessary in general. Derive a formula $L(x)$ for such a function which passes exactly through all the given points.
a. Develop polynomial basis functions $L_{k}(x)$ of degree $n-1$ with the following property:

$$
L_{k}\left(x_{j}\right)=\left\{\begin{array}{ll}
1 & j=k \\
0 & j \neq k
\end{array} \quad k=1 \ldots n\right.
$$

(Hint: How does the function $\frac{(x-a)}{(b-a)}$ behave?)
b. Use the basis functions to express the interpolating polynomial $L(x)$.
(Hint: sum up the correctly weighted y-entries).
c. Test your formula using the data points sampled from the one dimensional function $f(x)=\sqrt{x}$:

$$
f(1)=1 \quad f(4)=2 \quad f(16)=4
$$

Use a plotting tool to display this function and the "original curve" $f(x)$ in the same coordinate system and provide a printout in your solution. Also sketch the error function $e(x)=|f(x)-L(x)|$.

Exercise 3 (Bernstein Polynomials):

[1+1+1 points]
Prove the following identities for Bernstein Polynomials:

$$
\forall x: \sum_{i=0}^{d} b_{i}^{d}(x)=1, \quad x^{n}=\sum_{i=k}^{n} \frac{\binom{i}{k}}{\binom{n}{k}} \mathrm{~B}_{i}^{n}(x), \quad \frac{d}{d x} \mathrm{~B}_{i}^{n}(x)=n\left(\mathrm{~B}_{i-1}^{n-1}(x)-\mathrm{B}_{i}^{n-1}(x)\right)
$$

a. We want to interpolate n regularly spaced points $\left(x_{i}, y_{i}\right), i=1 \ldots n-1$ with $x_{i}=i h$ sampled from a 1D function $f(x)=y$. To avoid oscillation artifacts, we want to use piecewise polynomial basis functions $b_{i}(x)$ which have the following properties:

$$
b_{i}(x)=\left\{\begin{array}{lc}
1 & x=i h \\
0 & x \leq(i-1) h \\
0 & x \geq(i+1) h
\end{array} \quad b_{i} \in \mathbb{C}^{1}, i=1 \ldots n-2\right.
$$

Derive basis functions b_{i} which satisfy the properties.
b. Use a plotting tool to draw the function you get by interpolating the sample points

$$
s(0)=1, s(1)=2, s(2)=3, s(3)=4
$$

on the interval $[0,3]$ using the basis functions derived in (a) with $h=1$.
c. How do you need to change the basis functions b_{i} to make them reproduce constant functions $f(x)=c$ faithfully not only on the sample points but on the whole interval? Write down the new basis functions.

